J. S. UNIVERSITY Shikohabad, Firozabad (U.P.)

BACHELOR OF SCIENCE (B.Sc.)(THREE YEAR DEGREE COURSE)

PROGRAMME BROCHURE PHYSICS

2021

DEPARTMENT OF HIGHER EDUCATION U.P. GOVERNMENT, LUCKNOW

National Education Policy-2020 Common Minimum Syllabus for all U.P. State Universities and Colleges For first three years of Higher Education (UG)

PROPOSED STRUCTURE OF UG PHYSICS SYLLABUS

Name	Designation	Affiliation
Steering Committee		
Mrs. Monika S. Garg, (I.A.S.) Chairperson Steering Committee	Additional Chief Secretary	Dept. of Higher Education U.P., Lucknow
Prof. Poonam Tandan	Professor, Dept. of Physics	Lucknow University, U.P.
Prof. Hare Krishna	Professor, Dept. of Statistics	CCS University Meerut, U.P.
Dr. Dinesh C. Sharma	Associate Professor, Dept. of Zoology	K.M. Govt. Girls P.G. College Badalpur, G.B. Nagar, U.P.
Supervisory Committee-Sci	ence Faculty	
Dr. Vijay Kumar Singh	Associate Professor, Dept. of Zoology	Agra College, Agra
Dr. Santosh Singh	Dean, Dept. of Agriculture	Mahatma Gandhi Kashi Vidhyapeeth, Varanasi
Dr. Baby Tabussam	Associate Professor, Dept. of Zoology	Govt. Raza P.G. College Rampur, U.P.
Dr. Sanjay Jain	Associate Professor, Dept. of Statistics	St. John's College, Agra

Syllabus Developed by:

S.No.	Name	Designation	Department	College/University
1.	Dr. Gaurang Misra	Associate Professor	Physics	Agra College, Agra
2.	Dr. Naresh Kumar Chaudhary	Associate Professor	Physics & Electronics	Dr. R. M. L. A. University, Faizabad
3.	Dr. Vikram Singh	Assistant Professor	Physics	St. John's College, Agra

	SEMESTER-WISE TITLES OF THE PAPERS IN UG PHYSICS COURSE					
YEAR SEME- COURSE PAPER TITLE STER CODE		PAPER TITLE	THEORY / PRACTICAL	CREDIT		
		CERTIF	TCATE -IN BASIC PHYSICS & SEMICONDUCTOR DEVIC	ES		
	I	B010101T	Mathematical Physics & Newtonian Mechanics	Theory	4	
FIRST	1	B010102P	Mechanical Properties of Matter	Practical	2	
FIR YE,	II	B010201T	Thermal Physics & Semiconductor Devices	Theory	4	
	11	B010202P	Thermal Properties of Matter & Electronic Circuits	Practical	2	
		DIPLO	MA - IN APPLIED PHYSICS WITH ELECTRON	ICS		
	Ш	B010301T	Electromagnetic Theory & Modern Optics	Theory	4	
AR AR	1111	B010302P	Demonstrative Aspects of Electricity & Magnetism	Practical	2	
SECOND YEAR	IV	B010401T	Perspectives of Modern Physics & Basic Electronics	Theory	4	
S	11	B010402P	Basic Electronics Instrumentation	Practical	2	
			DEGREE -IN BACHELOR OF SCIENCE			
		B010501T	Classical & Statistical Mechanics	Theory	4	
_	\mathbf{V}	B010502T	Quantum Mechanics & Spectroscopy	Theory	4	
RB AR		B010503P	Demonstrative Aspects of Optics & Lasers	Practical	2	
THIRD		B010601T	Solid State & Nuclear Physics	Theory	4	
	VI	B010602T	Analog & Digital Principles & Applications	Theory	4	
		B010603P	Analog & Digital Circuits	Practical	2	

UG Physics Syllabus {Page 2 of 48}

SUBJECT PREREQUISITES

To study this subject, a student must have had the subjects **Physics & Mathematics** in class 12th.

PROGRAMME OUTCOMES (POs)

The practical value of science for productivity, for raising the standard of living of the people is surely recognized. Science as a power, which provides tools for effective action for the benefit of mankind or for conquering the forces of Nature or for developing resources, is surely highlighted everywhere. Besides the utilitarian aspect, the value of Science, lies in the fun called intellectual enjoyment. Science teaches the value of rational thought as well as importance of freedom of thought.

Our teaching so far has been aimed more at formal knowledge and understanding instead of training and application oriented. Presently, the emphasis is more on training, application and to some extent on appreciation, the fostering in the pupils of independent thinking and creativity. Surely, teaching has to be more objective based. The process of application based training, whether we call it a thrill or ability, is to be emphasized as much as the content.

Physics is a basic science; it attempts to explain the natural phenomenon in as simple a manner as possible. It is an intellectual activity aimed at interpreting the Multiverse. The starting point of all physics lies in experience. Experiment, whether done outside or in the laboratory, is an important ingredient of learning physics and hence the present programme integrates six experimental physics papers focusing on various aspects of modern technology based equipments. With all the limitations imposed (even the list of experiments as given in the syllabus) if the spirit of discovery by investigation is kept in mind, much of the thrill can be experienced.

- 1. The main aim of this programme is to help cultivate the love for Nature and its manifestations, to transmit the methods of science (the contents are only the means) to observe things around, to generalize, to do intelligent guessing, to formulate a theory & model, and at the same time, to hold an element of doubt and thereby to hope to modify it in terms of future experience and thus to practice a pragmatic outlook.
- 2. The programme intends to nurture the proficiency in functional areas of Physics, which is in line with the international standards, aimed at realizing the goals towards skilled India.
- 3. Keeping the application oriented training in mind; this programme aims to give students the competence in the methods and techniques of theoretical, experimental and computational aspects of Physics so as to achieve an overall understanding of the subject for holistic development. This will cultivate in specific application oriented training leading to their goals of employment.
- 4. The Bachelor's Project (Industrial Training / Survey / Dissertation) is intended to give an essence of research work for excellence in explicit areas. It integrates with specific job requirements / opportunities and provides a foundation for Bachelor (Research) Programmes.

UG Physics Syllabus {Page 3 of 48}

PROGRAMME SPECIFIC OUTCOMES (PSOs)

CERTIFICATE IN BASIC PHYSICS & SEMICONDUCTOR DEVICES

FIRST YEAR

This programme aims to give students the competence in the methods and techniques of calculations using Newtonian Mechanics and Thermodynamics. At the end of the course the students are expected to have hands on experience in modeling, implementation and calculation of physical quantities of relevance.

An introduction to the field of Circuit Fundamentals and Basic Electronics which deals with the physics and technology of semiconductor devices is practically useful and gives the students an insight in handling electrical and electronic instruments.

Experimental physics has the most striking impact on the industry wherever the instruments are used. The industries of electronics, telecommunication and instrumentation will specially recognize this course.

DIPLOMA IN APPLIED PHYSICS WITH ELECTRONICS

SECOND YEAR

This programme aims to introduce the students with Electromagnetic Theory, Modern Optics and Relativistic Mechanics. Electromagnetic Wave Propagation serves as a basis for all communication systems and deals with the physics and technology of semiconductor optoelectronic devices. A deeper insight in Electronics is provided to address the important components in consumer Optoelectronics, IT and Communication devices, and in industrial instrumentation.

The need of Optical instruments and Lasers is surely highlighted everywhere and at the end of the course the students are expected to get acquaint with applications of Lasers in technology.

Companies and R&D Laboratories working on Electromagnetic properties, Laser Applications, Optoelectronics and Communication Systems are expected to value this course.

DEGREE IN BACHELOR OF SCIENCE

THIRD YEAR

This programme contains very important aspects of modern day course curriculum, namely, Classical, Quantum and Statistical computational tools required in the calculation of physical quantities of relevance in interacting many body problems in physics. It introduces the branches of Solid State Physics and Nuclear Physics that are going to be of utmost importance at both undergraduate and graduate level. Proficiency in this area will attract demand in research and industrial establishments engaged in activities involving applications of these fields.

This course amalgamates the comprehensive knowledge of Analog & Digital Principles and Applications. It presents an integrated approach to analog electronic circuitry and digital electronics.

Present course will attract immense recognition in R&D sectors and in the entire cutting edge technology based industry.

UG Physics Syllabus {Page 4 of 48}

	SEMESTER-WISE PAPER TITLES WITH DETAILS					
YEAR	SEME- STER	PAPER	PAPER TITLE	PREREQUISITE For Paper	ELECTIVE For Major Subjects	
	CERTIFICATE IN BASIC PHYSICS & SEMICONDUCTOR DEVICES					
	STER	Theory Paper-1	Mathematical Physics & Newtonian Mechanics	Physics in 12 th / Mathematics in 12 th	YES Open to all	
FIRST YEAR	SEMESTER I	Practical Paper	Mechanical Properties of Matter	Opted / Passed Sem I, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.	
FIRST	STER	Theory Paper-1	Thermal Physics & Semiconductor Devices	Physics in 12 th / Chemistry in 12 th	YES Open to all	
	SEMESTER II	Practical Paper	Thermal Properties of Matter & Electronic Circuits	Opted / Passed Sem II, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.	
			DIPLOM IN APPLIED PHYSICS WI			
	STER	Theory Paper-1	Electromagnetic Theory & Modern Optics	Passed Sem I, Th Paper-1	YES Open to all	
) YEAR	SEMESTER	Practical Paper	Demonstrative Aspects of Electricity & Magnetism	Opted / Passed Sem III, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.	
SECOND YEAR	STER	Theory Paper-1	Perspectives of Modern Physics & Basic Electronics	Passed Sem I, Th Paper-1	YES Open to all	
	SEMESTER IV	Practical Paper	Basic Electronics Instrumentation	Opted / Passed Sem IV, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.	
			DEGREI IN BACHELOR OI			
		Theory	Classical & Statistical	Passed	YES	
	ER	Paper-1	Mechanics	Sem I, Th Paper-1	Chem./Comp. Sc./Math./Stat.	
	SEMESTER V	Theory	Quantum Mechanics &	Passed	YES	
×	EM	Paper-2	Spectroscopy Demonstrative Aspects of	Sem IV, Th Paper-1	Chem./Comp. Sc./Math./Stat. YES	
YEA	S	Practical Paper	Demonstrative Aspects of Optics & Lasers	Passed Sem III, Th Paper-1	Chem./Comp. Sc./Math./Stat.	
THIRD YEAR	ER.	Theory Paper-1	Solid State & Nuclear Physics	Passed Sem V, Th Paper-2	YES Chem./Comp. Sc./Math./Stat.	
	STI	Theory	Analog & Digital Principles &	Passed	YES	
	SEMESTER VI	Paper-2	Applications	Sem IV, Th Paper-1	Open to all	
	SE	Practical Paper	Analog & Digital Circuits	Opted / Passed Sem VI, Th Paper-2	YES Chem./Comp. Sc./Math./Stat.	

UG Physics Syllabus {Page 5 of 48}

FIRST YEAR DETAILED SYLLABUS FOR

CERTIFICATE

IN
BASIC PHYSICS & SEMICONDUCTOR DEVICES

UG Physics Syllabus {Page 6 of 48}

YEAR	SEME-	PAPER	PAPER TITLE	UNIT TITLE
	STER			(Periods Per Semester)
			CERTIFIC	
]	N BASIC PHYSICS & SEMIC	
				Part A
			Mathematical Physics &	I: Vector Algebra (7)
			Newtonian Mechanics	II: Vector Calculus (8)
			14cw toman wicenames	III: Coordinate Systems (8)
	ER	Theory	Part A: Basic Mathematical	IV: Introduction to Tensors (7)
	SEMESTER I	Paper-1	Physics	Part B
	ME 1		Part B: Newtonian Mechanics	V: Dynamics of a System of Particles (8)
	SE		& Wave Motion	VI: Dynamics of a Rigid Body (8)
				VII: Motion of Planets & Satellites (7)
-4				VIII: Wave Motion (7)
AR		Practical	Mechanical Properties of	Lab Experiment List
YE		Paper	Matter	Online Virtual Lab Experiment List/Link
FIRST YEAR				Part A
FIR			Thermal Physics & Semiconductor Devices	I: 0 th & 1 st Law of Thermodynamics (8)
				II: 2 nd & 3 rd Law of Thermodynamics (8)
			Semiconductor Devices	III: Kinetic Theory of Gases (7)
	ER	Theory	Part A: Thermodynamics &	IV: Theory of Radiation (7)
	SEMESTER II	Paper-1	Kinetic Theory of Gases	<u>Part B</u>
	ME		Part B: Circuit Fundamentals	V: DC & AC Circuits (7)
	SE		& Semiconductor Devices	VI: Semiconductors & Diodes (8)
			& Semiconductor Devices	VII: Transistors (8)
				VIII: Electronic Instrumentation (7)
		Practical	Thermal Properties of	Lab Experiment List
		Paper	Matter & Electronic Circuits	Online Virtual Lab Experiment List/Link

UG Physics Syllabus {Page 7 of 48}

Progr	amme/Class: Certificate	Year: Fir	st	Semester: First	
		Subject: P	hysics		
Cours	se Code: B010101T	Course Title: Ma	thematical Physics	& Newtonian Mechanic	S
		Course Outco	mes (COs)		
2. U 3. C 4. K 5. S 6. S 7. U	decognize the difference better and the physical intercomprehend the difference at a comprehend the meaning of 4-vector tudy the origin of pseudo for tudy the response of the class and the dynamics of the different features.	rpretation of gradient, diver nd connection between Car ors, Kronecker delta and Ep orces in rotating frame. ssical systems to external for planetary motion and the w	gence and curl. rtesian, spherical and osilon (Levi Civita) orces and their elast orking of Global Po	d cylindrical coordinate sy tensors. ic deformation. ositioning System (GPS).	stems.
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	M	lin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per wee	k): L-T-P: 4-0-0	
Unit		Topics			No. of Lectures
		PART Basic Mathema			
I	in context with	Indian ancient Physics and the holistic development of included under Continuous Vector Algerian and inversion as the rs (include physical examples and interpretation of addition, so for vectors. Position, separate	d contribution of Inf modern science at s Internal Evaluation basis for defining mples). Component ubtraction, dot production and displacement	scalars, vectors, pseudo- at form in 2D and 3D duct, wedge product, cross	
П	Vector Calculus Geometrical and physical interpretation of vector differentiation, Gradient, Divergence and Curl and their significance. Vector integration, Line, Surface (flux) and Volume integrals of vector fields. Gradient theorem, Gauss-divergence theorem, Stoke-curl theorem, Greens theorem and Helmholtz theorem (statement only). Introduction to Dirac delta function.				8
	2D & 3D Cartesian, Sphe equations. Expressions for divergence and curl in dif	displacement vector, arc le ferent coordinate systems.	dinate systems, bas ngth, area element, Components of ve	volume element, gradient, elocity and acceleration in	, 8

UG Physics Syllabus {Page 8 of 48}

	Introduction to Tensors	
	Principle of invariance of physical laws w.r.t. different coordinate systems as the basis for defining	
IV	tensors. Coordinate transformations for general spaces of nD, contravariant, covariant & mixed	7
1 1	tensors and their ranks, 4-vectors. Index notation and summation convention. Symmetric and skew-	,
	symmetric tensors. Invariant tensors, Kronecker delta and Epsilon (Levi Civita) tensors. Examples	
	of tensors in physics.	
	PART B	
	Newtonian Mechanics & Wave Motion	
	Dynamics of a System of Particles	
	Review of historical development of mechanics up to Newton. Background, statement and critical	
V	analysis of Newton's axioms of motion. Dynamics of a system of particles, centre of mass motion,	8
	and conservation laws & their deductions. Rotating frames of reference, general derivation of origin	
	of pseudo forces (Euler, Coriolis & centrifugal) in rotating frame, and effects of Coriolis force.	
	Dynamics of a Rigid Body	
	Angular momentum, Torque, Rotational energy and the inertia tensor. Rotational inertia for simple	
VI	bodies (ring, disk, rod, solid and hollow sphere, solid and hollow cylinder, rectangular lamina). The	8
	combined translational and rotational motion of a rigid body on horizontal and inclined planes.	
	Elasticity, relations between elastic constants, bending of beam and torsion of cylinder.	
	Motion of Planets & Satellites	
	Two particle central force problem, reduced mass, relative and centre of mass motion. Newton's	
VII	law of gravitation, gravitational field and gravitational potential. Kepler's laws of planetary motion	7
	and their deductions. Motions of geo-synchronous & geo-stationary satellites and basic idea of	
	Global Positioning System (GPS).	
	Wave Motion	
	Differential equation of simple harmonic motion and its solution, use of complex notation, damped	
VIII	and forced oscillations, Quality factor. Composition of simple harmonic motion, Lissajous figures.	7
V 111	Differential equation of wave motion. Plane progressive waves in fluid media, reflection of waves	,
	and phase change, pressure and energy distribution. Principle of superposition of waves, stationary	
	waves, phase and group velocity.	
	Suggested Readings	

PART A

- Murray Spiegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector Analysis", McGraw Hill, 2017, 2e
- 2. A.W. Joshi, "Matrices and Tensors in Physics", New Age International Private Limited, 1995, 3e

PART B

- Charles Kittel, Walter D. Knight, Malvin A. Ruderman, Carl A. Helmholz, Burton J. Moyer, "Mechanics (In SI Units): Berkeley Physics Course Vol 1", McGraw Hill, 2017, 2e
- Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 1", Pearson Education Limited, 2012
- Hugh D. Young and Roger A. Freedman, "Sears & Zemansky's University Physics with Modern Physics", Pearson Education Limited, 2017, 14e
- 4. D.S. Mathur, P.S. Hemne, "Mechanics", S. Chand Publishing, 1981, 3e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

UG Physics Syllabus {Page 9 of 48}

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Physics in 12th / Mathematics in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 10 of 48}

Progra	amme/Class: Certificate	Year: Fir	st	Semester: First	
		Subject: P	hysics		
Cours	e Code: B010102P	Course Ti	tle: Mechanical Pr	roperties of Matter	
		Course Outco	mes (COs)		
detern	nine the mechanical proper	ost striking impact on the inties. Measurement precision	n and perfection is	achieved through Lab Ex	periments
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per wee	ek): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
	 Modulus of rigidity Modulus of rigidity Young's modulus Young's modulus Poisson's ratio of rigidity Surface tension of Surface tension of Coefficient of visc Acceleration due to Frequency of AC rigidity Height of a building Study the wave for with the help of car 	of an irregular body by iner y by statistical method (Bar y by dynamical method (spl by bending of beam and Poisson's ratio by Sear ubber by rubber tubing water by capillary rise meth water by Jaeger's method osity of water by Poiseuille o gravity by bar pendulum mains by Sonometer g by Sextant rm of an electrically maint thode ray oscilloscope. Online Virtual Lab Exper	ton's apparatus) here / disc / Maxwe le's method nod 's method ained tuning fork /	alternating current source	60
	Torque and angula	r acceleration of a fly whee ons in different liquids of flywheel aw of motion	I		

UG Physics Syllabus {Page 11 of 48}

7. Projectile motion

8. Elastic and inelastic collision

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 12 of 48}

Progr	ramme/Class: Certificate	Year: Fir	st	Semester: Second	d
		Subject: P	hysics		
Cour	se Code: B010201T	Course Title: T	hermal Physics &	Semiconductor Devices	
		Course Outco	mes (COs)		
2. U 3. C 4. S 5. U 6. R 7. D	 Understand the physical significance of thermodynamical potentials. Comprehend the kinetic model of gases w.r.t. various gas laws. Study the implementations and limitations of fundamental radiation laws. Utility of AC bridges. Recognize the basic components of electronic devices. Design simple electronic circuits. 				
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	M	in. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per weel	x): L-T-P: 4-0-0	
Unit		Topics			No. of Lectures
		<u>PART</u>			l
	T	Thermodynamics & Kin	=	es	
I	State functions and termino energy, heat and work don between C _P and C _V . Carr combustion engines (Otto a	e. Work done in various that not's engine, efficiency and	Zeroth law and temp nermodynamical pro	cesses. Enthalpy, relation	8
	-	2 nd & 3 rd Law of The	rmodynamics		
п	Different statements of second law, Clausius inequality, entropy and its physical significance.			8	
		Kinetic Theory			
III	Kinetic model and deduction of gas laws. Derivation of Maxwell's law of distribution of velocities and its experimental verification. Degrees of freedom, law of equipartition of energy no derivation) and its application to specific heat of gases (mono, di and poly atomic).				
		Theory of Rac			
IV	Blackbody radiation, speci Derivation of Planck's law Boltzmann law and Wien's	v, deduction of Wien's d	istribution law, Ra		

UG Physics Syllabus {Page 13 of 48}

PART B				
	Circuit Fundamentals & Semiconductor Devices			
V	DC & AC Circuits Growth and decay of currents in RL circuit. Charging and discharging of capacitor in RC, LC and RCL circuits. Network Analysis - Superposition, Reciprocity, Thevenin's and Norton's theorems. AC Bridges - measurement of inductance (Maxwell's, Owen's and Anderson's bridges) and measurement of capacitance (Schering's, Wein's and de Sauty's bridges).	7		
	Semiconductors & Diodes			
VI	P and N type semiconductors, qualitative idea of Fermi level. Formation of depletion layer in PN junction diode, field & potential at the depletion layer. Qualitative idea of current flow mechanism in forward & reverse biased diode. Diode fabrication. PN junction diode and its characteristics, static and dynamic resistance. Principle, structure, characteristics and applications of Zener, Tunnel, Light Emitting, Point Contact and Photo diodes. Half and Full wave rectifiers, calculation of ripple factor, rectification efficiency and voltage regulation. Basic idea about filter circuits and voltage regulated power supply.	8		
	Transistors			
VII	Bipolar Junction PNP and NPN transistors. Study of CB, CE & CC configurations w.r.t. active, cutoff & saturation regions; characteristics; current, voltage & power gains; transistor currents & relations between them. Idea of base width modulation, base spreading resistance & transition time. DC Load Line analysis and Q-point stabilisation. Voltage Divider Bias circuit for CE amplifier. Qualitative discussion of RC coupled amplifier (frequency response not included).	8		
	Electronic Instrumentation			
VIII	Multimeter: Principles of measurement of dc voltage, dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, electron gun, electrostatic focusing and acceleration (no mathematical treatment). Front panel controls, special features of dual trace CRO, specifications of a CRO and their significance. Applications of CRO to study the waveform and measurement of voltage, current, frequency & phase difference.	7		
	Suggested Deadings			

Suggested Readings

PART A

- 1. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997, 7e
- F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998
- 3. Enrico Fermi, "Thermodynamics", Dover Publications, 1956
- 4. S. Garg, R. Bansal, C. Ghosh, "Thermal Physics", McGraw Hill, 2012, 2e
- 5. Meghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973, 5e

PART B

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e
- 6. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

UG Physics Syllabus {Page 14 of 48}

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Physics in 12th / Chemistry in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 15 of 48}

Programme/Class: Certificate		Year: First	Semester: Secon	ıd
		Subject: Phy	sics	
Cours	se Code: B010202P	Course Title: Therma	l Properties of Matter & Electronic Circ	cuits
		Course Outcome	es (COs)	
detern	nine the thermal and elect iments. Online Virtual Lab E	ronic properties. Measurements give an insight in s	ustry wherever the instruments are used to at precision and perfection is achieved the imulation techniques and provide a basis for	nrough Lat
	Credits:	2	Core Compulsory / Elective	
	Max. Marks:	25+75	Min. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
Unit		Topics		No. of Lectures
		Lab Experiment	List	
	 Coefficient of ther. Coefficient of ther. Value of Stefan's of Verification of Ste Variation of therm Temperature coeff Charging and discl A.C. Bridges: Variant Resonance in series Characteristics of and Characteristics of and Half wave & full wave Unregulated and Ram Various measurem 	constant fan's law o-emf across two junctions of icient of resistance by Platinum narging in RC and RCL circuit ous experiments based on meas and parallel RCL circuit PN Junction, Zener, Tunnel, L a transistor (PNP and NPN) in vave rectifiers and Filter circuit egulated power supply ents with Cathode Ray Oscille	a thermocouple with temperature m resistance thermometer ts assurement of L and C ight Emitting and Photo diode CE, CB and CC configurations its	60
Ī		Online Virtual Lab Experin	ient List / Link	
	Thermal Properties of Ma Virtual Labs at Amrita Visl https://vlab.amrita.edu/?sub 1. Heat transfer by rac 2. Heat transfer by co	nwa Vidyapeetham p=1&brch=194 diation		
	3. Heat transfer by na4. The study of phase	tural convection change on: Determination of Stefan's oling s	constant	

UG Physics Syllabus {Page 16 of 48}

Semiconductor Devices:

Virtual Labs an initiative of MHRD Govt, of India

http://vlabs.iitkgp.ac.in/be/#

- 9. Familiarisation with resistor
- 10. Familiarisation with capacitor
- 11. Familiarisation with inductor
- 12. Ohm's Law
- 13. RC Differentiator and integrator
- 14. VI characteristics of a diode
- 15. Half & Full wave rectification
- 16. Capacitative rectification
- 17. Zener Diode voltage regulator
- 18. BJT common emitter characteristics
- 19. BJT common base characteristics
- 20. Studies on BJT CE amplifier

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 4. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194
- 2. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/#
- 3. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester II, Theory Paper-1 (B010201T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)

05 marks for Class Interaction

05 marks for Viva Voce

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 17 of 48}

SECOND YEAR DETAILED SYLLABUS FOR

DIPLOMA

IN
ADVANCED PHYSICS WITH ELECTRONICS

UG Physics Syllabus {Page 18 of 48}

YEAR	SEME- STER	PAPER	PAPER TITLE	UNIT TITLE (Periods Per Semester)
	SILK		DIPLON IN APPLIED PHYSICS W	MA
	SEMESTER	Theory Paper-1	Electromagnetic Theory & Modern Optics Part A: Electromagnetic Theory Part B: Physical Optics & Lasers	I: Electrostatics (8) II: Magnetostatics (8) III: Time Varying Electromagnetic Fields (7) IV: Electromagnetic Waves (7) Part B V: Interference (8) VI: Diffraction (8) VII: Polarisation (7) VII: Lasers (7)
YEA		Practical	Demonstrative Aspects of	Lab Experiment List
SECOND YEAR	SEMESTER IV	Paper Theory Paper-1	Perspectives of Modern Physics & Basic Electronics Part A: Perspectives of Modern Physics Part B: Basic Electronics & Introduction to Fiber Optics	Online Virtual Lab Experiment List/Link Part A I: Relativity-Experimental Background (7) II: Relativity-Relativistic Kinematics (8) III: Inadequacies of Classical Mechanics (8) IV: Introduction to Quantum Mechanics (7) Part B V: Transistor Biasing (7) VI: Amplifiers (7) VII: Feedback & Oscillator Circuits (8) VIII: Introduction to Fiber Optics (8)
		Practical Paper	Basic Electronics Instrumentation	Lab Experiment List Online Virtual Lab Experiment List/Link

UG Physics Syllabus {Page 19 of 48}

Progr	amme/Class: Diploma	Year: Seco	nd	Semester: Third	
		Subject: P	hysics		
Course Code: B010301T Course Title: Electromagnetic Theory & Modern Optics					
		Course Outco	mes (COs)		
 Better understanding of electrical and magnetic phenomenon in daily life. To troubleshoot simple problems related to electrical devices. Comprehend the powerful applications of ballistic galvanometer. Study the fundamental physics behind reflection and refraction of light (electromagnetic waves). Study the working and applications of Michelson and Fabry-Perot interferometers. Recognize the difference between Fresnel's and Fraunhofer's class of diffraction. Comprehend the use of polarimeters. Study the characteristics and uses of lasers. Credits: 4 Core Compulsory / Elective					
	Max. Marks:	25+75	M	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practica	al (in hours per wee	k): L-T-P: 4-0-0	
Unit	Topics			No. of Lectures	
		<u>PART</u> Electromagne			
Ι	Electric charge & charge densities, electric force between two charges. General expression for Electric field in terms of volume charge density (divergence & curl of Electric field), general expression for Electric potential in terms of volume charge density and Gauss law (applications included). Study of electric dipole. Electric fields in matter, polarization, auxiliary field D (Electric displacement), electric susceptibility and permittivity.				8
II	Magnetostatics Electric current & current densities, magnetic force between two current elements. General expression for Magnetic field in terms of volume current density (divergence and curl of Magnetic field), General expression for Magnetic potential in terms of volume current density and Ampere's circuital law (applications included). Study of magnetic dipole (Gilbert & Ampere model). Magnetic fields in matter, magnetisation, auxiliary field H, magnetic susceptibility and permeability.			8	
	Time Varying Electromagnetic Fields Faraday's laws of electromagnetic induction and Lenz's law. Displacement current, equation of continuity and Maxwell-Ampere's circuital law. Self and mutual induction (applications included). Derivation and physical significance of Maxwell's equations. Theory and working of moving coil ballistic galvanometer (applications included).			7	
IV	Electromagnetic energy dendielectrics, homogeneous & Reflection and refraction claw, Fresnel's formulae (or	k inhomogeneous plane w f homogeneous plane elec	Plane electromagne aves and dispersive tromagnetic waves,	e & non-dispersive media. law of reflection, Snell's	7

UG Physics Syllabus {Page 20 of 48}

PART B					
Physical Optics & Lasers					
	Interference				
v	Conditions for interference and spatial & temporal coherence. Division of Wavefront - Fresnel's	8			
•	Biprism and Lloyd's Mirror. Division of Amplitude - Parallel thin film, wedge shaped film and	0			
	Newton's Ring experiment. Interferometer - Michelson and Fabry-Perot.				
	Diffraction				
	Distinction between interference and diffraction. Fresnel's and Fraunhofer's class of diffraction.				
VI	Fresnel's Half Period Zones and Zone plate. Fraunhofer diffraction at a single slit, n slits and	8			
	Diffracting Grating. Resolving Power of Optical Instruments - Rayleigh's criterion and resolving	ruments - Rayleigh's criterion and resolving			
	power of telescope, microscope & grating.				
	Polarisation				
VII	Polarisation by dichronic crystals, birefringence, Nicol prism, retardation plates and Babinet's	7			
VII	compensator. Analysis of polarized light. Optical Rotation - Fresnel's explanation of optical	/			
	rotation and Half Shade & Biquartz polarimeters.				
	Lasers				
VIII	Characteristics and uses of Lasers. Quantitative analysis of Spatial and Temporal coherence.	7			
A 111	Conditions for Laser action and Einstein's coefficients. Three and four level laser systems	,			
	(qualitative discussion).				

Suggested Readings

PART A

- 1. D.J. Griffiths, "Introduction to Electrodynamics", Prentice-Hall of India Private Limited, 2002, 3e
- E.M. Purcell, "Electricity and Magnetism (In SI Units): Berkeley Physics Course Vol 2", McGraw Hill, 2017, 2e
- 3. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012
- 4. D.C. Tayal, "Electricity and Magnetism", Himalaya Publishing House Pvt. Ltd., 2019, 4e

PART B

- 1. Francis A. Jenkins, Harvey E. White, "Fundamentals of Optics", McGraw Hill, 2017, 4e
- 2. Samuel Tolansky, "An Introduction to Interferometry", John Wiley & Sons Inc., 1973, 2e
- 3. A. Ghatak, "Optics", McGraw Hill, 2017, 6e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Open to all

UG Physics Syllabus {Page 21 of 48}

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 22 of 48}

Progra	amme/Class: Diploma	Year: Seco	nd	Semester: Third	l
		Subject: P	hysics		
Cours	e Code: B010302P	Course Title: Dem	onstrative Aspects	of Electricity & Magneti	ism
		Course Outco	mes (COs)		
detern	nine the electric and mag	ost striking impact on the inetic properties. Measurem Experiments give an insight i	nent precision and	perfection is achieved the	rough Lal
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per wee	ek): L-T-P: 0-0-4	
Unit		Tonica			No. of
Omt	Topics				Lectures
		Lab Experime			
		etic field along the axis of s	-		
		etic field along the axis of F neter: Ballistic constant, cur		voltogo concitivity	
		neter: High resistance by Le	•	voltage sensitivity	
		neter: Low resistance by Ke	_	e method	
		neter: Self inductance of a c	-		
		neter: Comparison of capac			
	8. Carey Foster Bridg	ge: Resistance per unit lengt	th and low resistance	ce	
		bration Magnetometer: Magnetometer: Magnetometer	agnetic moment of	f a magnet and horizontal	ĺ
	component of earth				
	10. Earth Inductor: Ho	rizontal component of earth	n's magnetic field		60
-		Online Virtual Lab Expen	riment List / Link		_
	Virtual Labs at Amrita Visl	hwa Vidyapeetham			
	https://vlab.amrita.edu/?sub	b=1&brch=192			
	Tangent galvanome	eter			
		ng the axis of a circular coil	carrying current		
	3. Deflection magneto	-			
	4. Van de Graaff gene	erator			
	5. Barkhausen effect				
	6. Temperature coeffi	cient of resistance			

UG Physics Syllabus {Page 23 of 48}

7. Anderson's bridge8. Quincke's method

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=192
- Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester III, Theory Paper-1 (B010301T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 24 of 48}

Progr	ogramme/Class: Diploma Year: Second Semester: Fourth				
		Subject: P	Physics		
Course Code: B010401T Course Title: Perspectives of Modern Physics & Basic Electroni					
		Course Outco	mes (COs)		
	Recognize the difference between the structure of space & time in Newtonian & Relativistic mechanic				
	Inderstand the physical sign	-	f Lorentz transformat	tion equations.	
	comprehend the wave-partic	•			
	evelop an understanding of	•		S.	
	tudy the comparison between		es.		
	tudy the classification of an	•			
	comprehend the use of feedb comprehend the theory and v		ong with its applicati	ons	
8. C			<u> </u>		
	Credits:	4	Core C	Compulsory / Elective	
	Max. Marks:	25+75	Mi	n. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practic	al (in hours per week): L-T-P: 4-0-0	
Unit	Topics				No. of
					Lectures
		PART			
	Г	Perspectives of M	<u> </u>		
	Relativity-Experimental Background				
т	Structure of space & time in Newtonian mechanics and inertial & non-inertial frames. Galilean				
I	transformations. Newtonian relativity. Galilean transformation and Electromagnetism. Attempts to				
	locate the Absolute Frame: Michelson-Morley experiment and significance of the null result. Einstein's postulates of special theory of relativity.				
	Emstem's postulates of spe	•	c Kinematics		
	Relativity-Relativistic Kinematics Structure of space & time in Relativistic mechanics and derivation of Lorentz transformation				
	equations (4-vector formulation included). Consequences of Lorentz Transformation Equations				
	(derivations & examples included): Transformation of Simultaneity (Relativity of simultaneity);				
II	Transformation of Length (Length contraction); Transformation of Time (Time dilation);				1 X
	Transformation of Velocity (Relativistic velocity addition); Transformation of Acceleration;				
	Transformation of Mass (Variation of mass with velocity). Relation between Energy & Mass				
	(Einstein's mass & energy	relation) and Energy & Mo	mentum.		
		Inadequacies of Class	ical Mechanics		
	Particle Properties of Waves: Spectrum of Black Body radiation, Photoelectric effect, Compton				
III	effect and their explanations based on Max Planck's Quantum hypothesis.				
	Wave Properties of Particles: Louis de Broglie's hypothesis of matter waves and their experimental				
	verification by Davisson-G		•		
		Introduction to Quant			
	Matter Waves: Mathematical representation, Wavelength, Concept of Wave group, Group (particle)				7
IV	velocity, Phase (wave) velocity and relation between Group & Phase velocities.				
	Wave Function: Functional form, Normalisation of wave function, Orthogonal & Orthonormal				
	wave functions and Probabilistic interpretation of wave function based on Born Rule.				

UG Physics Syllabus {Page 25 of 48}

PART B								
	Basic Electronics & Introduction to Fiber Optics							
V	Transistor Biasing Faithful amplification & need for biasing. Stability Factors and its calculation for transistor biasing circuits for CE configuration: Fixed Bias (Base Resistor Method), Emitter Bias (Fixed Bias with Emitter Resistor), Collector to Base Bias (Base Bias with Collector Feedback) &, Voltage Divider Bias. Discussion of Emitter-Follower configuration.	7						
	Amplifiers							
VI	Classification of amplifiers based on Mode of operation (Class A, B, AB, C & D), Stages (single & multi stage, cascade & cascode connections), Coupling methods (RC, Transformer, Direct & LC couplings), Nature of amplification (Voltage & Power amplification) and Frequency capabilities (AF, IF, RF & VF). Theory & working of RC coupled voltage amplifier (Uses of various resistors & capacitors, and Frequency response) and Transformer coupled power amplifier (calculation of Power, Effect of temperature, Use of heat sink & Power dissipation). Calculation of Amplifier Efficiency (power efficiency) for Class A Series-Fed, Class A Transformer Coupled, Class B Series-Fed and Class B Transformer Coupled amplifiers.							
	Feedback & Oscillator Circuits							
VII	Feedback Circuits: Effects of positive and negative feedback. Voltage Series, Voltage Shunt, Current Series and Current Shunt feedback connection types and their uses for specific amplifiers. Estimation of Input Impedance, Output Impedance, Gain, Stability, Distortion, Noise and Band Width for Voltage Series negative feedback and their comparison between different negative feedback connection types. Oscillator Circuits: Use of positive feedback for oscillator operation. Barkhausen criterion for self-sustained oscillations. Feedback factor and frequency of oscillation for RC Phase Shift oscillator and Wein Bridge oscillator. Qualitative discussion of Reactive Network feedback oscillators (Tuned oscillator circuits): Hartley & Colpitt oscillators.	8						
	Introduction to Fiber Optics							
VIII	Basics of Fiber Optics, step index fiber, graded index fiber, light propagation through an optical fiber, acceptance angle & numerical aperture, qualitative discussion of fiber losses and applications of optical fibers.	8						
	Suggested Readings							

PART A

- 1. A. Beiser, Shobhit Mahajan, "Concepts of Modern Physics: Special Indian Edition", McGraw Hill, 2009, 6e
- 2. John R. Taylor, Chris D. Zafiratos, Michael A.Dubson, "Modern Physics for Scientists and Engineers", Prentice-Hall of India Private Limited, 2003, 2e
- 3. R.A. Serway, C.J. Moses, and C.A. Moyer, "Modern Physics", Cengage Learning India Pvt. Ltd, 2004, 3e
- 4. R. Resnick, "Introduction to Special Relativity", Wiley India Private Limited, 2007
- 5. R. Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e

UG Physics Syllabus {Page 26 of 48}

PART B

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 27 of 48}

Programme/Class: Diploma Year: S e		Year: Secon	ıd	Semester: Fourth	
		Subject: Ph	ysics		
Cours	e Code: B010402P	Course Titl	e: Basic Electron	ics Instrumentation	
		Course Outcon	nes (COs)		
instru achie	ments are used to study a	on has the most striking in the determine the electronic onts. Online Virtual Lab Exp	properties. Meas	urement precision and pe	erfection i
	Credits	2	Core	Compulsory / Elective	
	Max. Marks	25+75	M	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	(in hours per wee	k): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
		Lab Experimen	t List		
	 Clippers and Clar Study of Emitter F Frequency response Frequency response 	follower se of single stage RC coupled se of single stage Transforme feedback on frequency respo rigger scillator	l amplifier er coupled amplifie		
		Online Virtual Lab Experi	ment List / Link		
	Virtual Labs an initiative of http://vlabs.iitkgp.ac.in/psa				60
	 Diode as Clippers Diode as Clamper BJT as switch and 				
	Virtual Labs an initiative of http://vlabs.iitkgp.ac.in/be/				
	4. RC frequency resp	onse			
	Virtual Labs at Amrita Vis https://vlab.amrita.edu/ind	• •			
	5. Hartley oscillator6. Colpitt oscillator				

UG Physics Syllabus {Page 28 of 48}

Virtual Labs at Amrita Vishwa Vidyapeetham

http://vlab.amrita.edu/index.php?sub=59&brch=269

- 7. Fiber Optic Analog and Digital Link
- 8. Fiber Optic Bi-directional Communication
- 9. Wavelength Division Multiplexing
- 10. Measurement of Bending Losses in Optical Fiber
- 11. Measurement of Numerical Aperture
- 12. Study of LED and Detector Characteristics

Suggested Readings

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/psac/#
- 2. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/#
- 3. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/index.php?sub=1&brch=201
- 4. Virtual Labs at Amrita Vishwa Vidyapeetham, http://vlab.amrita.edu/index.php?sub=59&brch=269
- 5. Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)

05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 29 of 48}

THIRD YEAR DETAILED SYLLABUS FOR

DEGREE IN

BACHELOR OF SCIENCE

UG Physics Syllabus {Page 30 of 48}

YEAR	SEME-	PAPER	PAPER TITLE UNIT TITLE			
IEAK	STER	TATEK	FAFER IIILE	(Periods Per Semester)		
			DEGRE			
	Γ		IN BACHELOR O			
			Classical & Statistical Mechanics	I: Constrained Motion (6) II: Lagrangian Formalism (9)		
	Ж	Theory Paper-1	Part A: Introduction to Classical Mechanics Part B: Introduction to Statistical Mechanics	III: Hamiltonian Formalism (8) IV: Central Force (7) Part B V: Macrostate & Microstate (6) VI: Concept of Ensemble (6) VII: Distribution Laws (10) VIII: Applications of Statistical Distribution Laws (8)		
~	SEMESTER	Theory Paper-2	Quantum Mechanics & Spectroscopy Part A: Introduction to Quantum Mechanics Part B: Introduction to Spectroscopy	Part A I: Operator Formalism (5) II: Eigen & Expectation Values (6) III: Uncertainty Principle & Schrodinger Equation (7) IV: Applications of Schrodinger Equation (12) Part B V: Vector Atomic Model (10) VI: Spectra of Alkali & Alkaline Elements (6) VII: X-Rays & X-Ray Spectra (7) VIII: Molecular Spectra (7)		
AF		Practical	Demonstrative Aspects of	Lab Experiment List		
YE		Paper	Optics & Lasers	Online Virtual Lab Experiment List/Link		
THIRD YEAR	ER	Theory Paper-1	Solid State & Nuclear Physics Part A: Introduction to Solid State Physics Part B: Introduction to Nuclear Physics	Part A I: Crystal Structure (7) II: Crystal Diffraction (7) III: Crystal Bindings (7) IV: Lattice Vibrations (9) Part B V: Nuclear Forces & Radioactive Decays (9) VI: Nuclear Models & Nuclear Reactions (9) VII: Accelerators & Detectors (6) VIII: Elementary Particles (6)		
	SEMESTE	Theory Paper-2 Part A: A Circuits	Analog & Digital Principles & Applications Part A: Analog Electronic Circuits Part B: Digital Electronics	Part A I: Semiconductor Junction (9) II: Transistor Modeling (8) III: Field Effect Transistors (8) IV: Other Devices (5) Part B V: Number System (6) VI: Binary Arithmetic (5) VII: Logic Gates (9) VIII: Combinational & Sequential Circuits (10)		
		Practical Paper	Analog & Digital Circuits	Lab Experiment List Online Virtual Lab Experiment List/Link		

UG Physics Syllabus {Page 31 of 48}

Progr	amme/Class: Degree	Year: Thi	rd	Semester: Fifth	
		Subject: P	hysics		
Course Code: B010501T Course Title: Classical & Statistical Mechanics					
		Course Outco	mes (COs)		
 Understand the concepts of generalized coordinates and D'Alembert's principle. Understand the Lagrangian dynamics and the importance of cyclic coordinates. Comprehend the difference between Lagrangian and Hamiltonian dynamics. Study the important features of central force and its application in Kepler's problem. Recognize the difference between macrostate and microstate. Comprehend the concept of ensembles. Understand the classical and quantum statistical distribution laws. Study the applications of statistical distribution laws. 					
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	M	in. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practica	al (in hours per weel	k): L-T-P: 4-0-0	
Unit	it Topics			No. of Lectures	
		PART			
		Introduction to Clas			1
I	Constrained Motion Constraints - Definition, Classification and Examples. Degrees of Freedom and Configuration space. Constrained system, Forces of constraint and Constrained motion. Generalised coordinates, Transformation equations and Generalised notations & relations. Principle of Virtual work and D'Alembert's principle.			6	
II	Lagrangian Formalism Lagrangian for conservative & non-conservative systems, Lagrange's equation of motion (no derivation), Comparison of Newtonian & Lagrangian formulations, Cyclic coordinates, and Conservation laws (with proofs and properties of kinetic energy function included). Simple examples based on Lagrangian formulation.				l 9
		Hamiltonian Fo	rmalism		
III	Phase space, Hamiltonian for conservative & non-conservative systems, Physical significance of Hamiltonian, Hamilton's equation of motion (no derivation), Comparison of Lagrangian & Hamiltonian formulations, Cyclic coordinates, and Construction of Hamiltonian from Lagrangian. Simple examples based on Hamiltonian formulation.				
IV	Central Force Definition and properties (with prove) of central force. Equation of motion and differential equation				7

UG Physics Syllabus {Page 32 of 48}

PART B							
Introduction to Statistical Mechanics							
	Macrostate & Microstate						
V	Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase	l h					
	space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of	O					
	accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.						
	Concept of Ensemble						
VI	Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's	6					
V 1	theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles.	O					
	Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.						
	Distribution Laws						
	Statistical Distribution Laws: Expressions for number of accessible microstates, probability &						
	number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi-						
VII	Dirac statistics. Comparison of statistical distribution laws and their physical significance.	10					
	Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition						
	Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between						
	Partition function and Thermodynamic potentials.						
	Applications of Statistical Distribution Laws						
	Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of						
VIII	Planck's Distribution Law.	8					
V 111	Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy,	o					
	Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and						
	concept of Density of States (Density of Orbitals).						
	Suggested Deadings						

Suggested Readings

PART A

- 1. Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2011, 3e
- 2. N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017
- 3. R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017

PART B

- 1. F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e
- 2. B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e
- 3. B.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

UG Physics Syllabus {Page 33 of 48}

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 34 of 48}

Progr	ramme/Class: Degree	Year: Third Semester:	Fifth		
	,	Subject: Physics			
Course Code: B010502T Course Title: Quantum Mechanics & Spectroscopy					
		Course Outcomes (COs)			
 Understand the significance of operator formalism in Quantum mechanics. Study the eigen and expectation value methods. Understand the basis and interpretation of Uncertainty principle. Develop the technique of solving Schrodinger equation for 1D and 3D problems. Comprehend the success of Vector atomic model in the theory of Atomic spectra. Study the different aspects of spectra of Group I & II elements. Study the production and applications of X-rays. Develop an understanding of the fundamental aspects of Molecular spectra. 					
	Credits:	4 Core Compulsory / Electiv	e		
	Max. Marks:	25+75 Min. Passing Marks:			
	Total No. of	Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Unit	Topics				
		PART A			
		Introduction to Quantum Mechanics Operator Formalism			
Ι	Operator Formalism Operators: Review of matrix algebra, definition of an operator, special operators, operator algebra and operators corresponding to various physical-dynamical variables. Commutators: Definition, commutator algebra and commutation relations among position, linear momentum & angular momentum and energy & time. Simple problems based on commutation relations.				
		Eigen & Expectation Values			
Eigen & Expectation Values: Eigen equation for an operator, eigen state (value) and eigen functions. Linear superposition of eigen functions and Non-degenerate & Degenerate eigen states. Expectation value pertaining to an operator and its physical interpretation. Hermitian Operators: Definition, properties and applications. Prove of the hermitian nature of various physical-dynamical operators.					
Ш	Uncertainty Principle: Comof operators as the basis for principle through Schwarz in dynamical parameters and in Schrodinger Equation: Deserting the equation as an eigen equation.	mutativity & simultaneity (theorems with proofs). Non commutativity and derivation of general form of uncertainty principle and derivation of general form of uncertainty principle for various conjugate pairs of physics applications. Evivation of time independent & time dependent forms, Schroden, Deviation & interpretation of equation of continuity in Schroden of motion of an operator in Schrodinger representation.	ainty sical- 7 inger		

UG Physics Syllabus {Page 35 of 48}

	Applications of Schrödinger Equation					
IV	Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well					
	potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator.					
	Application to 3D Problems: Infinite Square well potential (Particle in a 3D box) and the Hydrogen atom					
	(radial distribution function and radial probability included).					
	(Direct solutions of Hermite, Associated Legendre and Associated Laguerre differential equations					
	to be substituted).					
	PART B					
	Introduction to Spectroscopy					
	Vector Atomic Model					
	Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine					
	structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum.					
V	Vector atomic model (Stern-Gerlach experiment included) and physical & geometrical	10				
	interpretations of various quantum numbers for single & many valence electron systems. LS & jj					
	couplings, spectroscopic notation for energy states, selection rules for transition of electrons and					
	intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.					
	Spectra of Alkali & Alkaline Elements					
VI	Spectra of alkali elements: Screening constants for s, p, d & f orbitals; sharp, principle, diffuse &	6				
V 1	fundamental series; doublet structure of spectra and fine structure of Sodium D line.	U				
	Spectra of alkaline elements: Singlet and triplet structure of spectra.					
	X-Rays & X-Ray Spectra					
VII	Nature & production, Continuous X-ray spectrum & Duane-Hunt's law, Characteristic X-ray	7				
V 11	spectrum & Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption	,				
	spectrum.					
	Molecular Spectra					
	Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation					
VIII	of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational	7				
VIII	energies, transition rules, pure rotational spectra and determination of inter nuclear distance.	/				
	Rotational-Vibrational spectra; transition rules; fundamental band & hot band; O, P, Q, R, S					
	branches.					

Applications of Schrodinger Equation

Suggested Readings

PART A

- 1. D.J. Griffiths, "Introduction to Quantum Mechanics", Pearson Education, India, 2004, 2e
- 2. E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017
- 3. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 3", Pearson Education Limited, 2012
- 4. R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e

PART B

- 1. H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934
- 2. C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e
- 3. R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e
- 4. S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

UG Physics Syllabus {Page 36 of 48}

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 37 of 48}

Progr	amme/Class: Degree	Year: Thir	d	Semester: Fifth	ı
		Subject: Pl	nysics	1	
Cours	se Code: B010503P	Course Title: D	Demonstrative As	spects of Optics & Lasers	
		Course Outcor	nes (COs)		
deteri	nine the optical properties e Virtual Lab Experiments	ost striking impact on the instance. Measurement precision agive an insight in simulation	and perfection is a techniques and p	achieved through Lab Exprovide a basis for modeling	periments
	Credits	2	Cor	e Compulsory / Elective	
	Max. Marks:	25+75]	Min. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practica	l (in hours per we	eek): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
		Lab Experime	nt List		
	 Newton's Rings: F Plane Diffraction C Plane Diffraction C Spectrometer: Ref Spectrometer: Dispersion C Polarimeter: Speci 	Vavelength of sodium light Refractive index of liquid Grating: Resolving power Grating: Spectrum of mercuractive index of the material persive power of the material fic rotation of sugar solution for light using diffraction by	of a prism using l of a prism using a single slit	mercury light	
		Online Virtual Lab Exper	iment List / Link	<u> </u>	
	Virtual Labs at Amrita Vishttps://vlab.amrita.edu/?sul	p=1&brch=189			60
		erometer: Wavelength of lase	er beam		
	3. Newton's Rings: W	· ·			
	4. Newton's Rings: R	efractive index of liquid			
	5. Brewster's angle d				
	6. Laser beam diverg	ence and spot size			
	Virtual Labs at Amrita Vis https://vlab.amrita.edu/inde	• •			
	•	ractive index of the material persive power of a prism	of a prism		
		ermination of Cauchy's cons	stants		
	10. Diffraction Grating	5			

UG Physics Syllabus {Page 38 of 48}

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=189
- 2. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/index.php?sub=1&brch=281
- 3. Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Course Prerequisites

Passed Semester III, Theory Paper-1 (B010301T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 39 of 48}

Programme/Class: Degree		Year: Thi i	·d	Semester: Sixth	
		Subject: P	hysics		
Cou	Course Code: B010601T Course Title: Solid State & Nuclear Physics				
	Course Outcomes (COs)				
2. 4. 5. 6. 7.	 Comprehend the power of X-ray diffraction and the concept of reciprocal lattice. Study various properties based on crystal bindings. Recognize the importance of Free Electron & Band theories in understanding the crystal properties. Study the salient features of nuclear forces & radioactive decays. Understand the importance of nuclear models & nuclear reactions. Comprehend the working and applications of nuclear accelerators and detectors. 				
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks: 25+75 Min. Passing Marks:				
	Total No. of	Lectures-Tutorials-Practica	al (in hours per weel	s): L-T-P: 4-0-0	
Uni	it Topics			No. of Lectures	
		PART			
	<u> </u>	Introduction to Soli			T
I	Crystal Structure Lattice, Basis & Crystal structure. Lattice translation vectors, Primitive & non-primitive cells. Symmetry operations, Point group & Space group. 2D & 3D Bravais lattice. Parameters of cubic lattices. Lattice planes and Miller indices. Simple crystal structures - HCP & FCC, Diamond, Cubic Zinc Sulphide, Sodium Chloride, Cesium Chloride and Glasses.				7
II	Crystal Diffraction X-ray diffraction and Bragg's law. Experimental diffraction methods - Laue, Rotating crystal and Powder methods. Derivation of scattered wave amplitude. Reciprocal lattice, Reciprocal lattice vectors and relation between Direct & Reciprocal lattice. Diffraction conditions, Ewald's method and Brillouin zones. Reciprocal lattice to SC, BCC & FCC lattices. Atomic Form factor and Crystal Structure factor.			7	
		Crystal Bind	O		
III	Classification of Crystals on the Basis of Bonding - Ionic, Covalent, Metallic, van der Waals (Molecular) and Hydrogen bonded. Crystals of inert gases, Attractive interaction (van der Waals-London) & Repulsive interaction, Equilibrium lattice constant, Cohesive energy and Compressibility & Bulk modulus. Ionic crystals, Cohesive energy, Madelung energy and evaluation of Madelung constant.				

UG Physics Syllabus {Page 40 of 48}

	Lattice Vibrations				
	attice Vibrations: Lattice vibrations for linear mono & di atomic chains, Dispersion relations and				
	Acoustical & Optical branches (qualitative treatment). Qualitative description of Phonons in solids.				
IV	Lattice heat capacity, Dulong-Petit's law and Einstein's theory of lattice heat capacity.	9			
IV	Free Electron Theory: Fermi energy, Density of states, Heat capacity of conduction electrons,	9			
	Paramagnetic susceptibility of conduction electrons and Hall effect in metals.				
	nd Theory: Origin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model,				
	Effectice mass of an electron & Concept of Holes & Classification of solids on the basis of band theory.				
	PART B				
	Introduction to Nuclear Physics				
	Nuclear Forces & Radioactive Decays				
	General Properties of Nucleus: Mass, binding energy, radii, density, angular momentum, magnetic				
	dipole moment vector and electric quadrupole moment tensor.				
V	Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties.	9			
	Radioactive Decays: Nuclear stability, basic ideas about beta minus decay, beta plus decay, alpha	ı			
	gamma decay & electron capture, fundamental laws of radioactive disintegration and				
	radioactive series.				
	Nuclear Models & Nuclear Reactions				
	Nuclear Models: Liquid drop model and Bethe-Weizsacker mass formula. Single particle shell				
VI	model (the level scheme in the context of reproduction of magic numbers included).	9			
	Nuclear Reactions: Bethe's notation, types of nuclear reaction, Conservation laws, Cross-section of				
	nuclear reaction, Theory of nuclear fission (qualitative), Nuclear reactors and Nuclear fusion.				
	Accelerators & Detectors				
	Accelerators: Theory, working and applications of Van de Graaff accelerator, Cyclotron and				
VII	Synchrotron.	6			
	Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation	n			
	counter and Wilson cloud chamber.				
	Elementary Particles				
	Fundamental interactions & their mediating quanta. Concept of antiparticles. Classification of				
VIII	elementary particles based on intrinsic-spin, mass, interaction & lifetime. Families of Leptons,	6			
	ns, Baryons & Baryon Resonances. Conservation laws for mass-energy, linear momentum,				
	momentum, electric charge, baryonic charge, leptonic charge, isospin & strangeness.				
	Concept of Quark model.				
Suggested Readings					

Suggested Readin

PART A

- 1. Charles Kittel, "Introduction to Solid State Physics", Wiley India Private Limited, 2012, 8e
- 2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993
- 3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015

PART B

- 1. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008
- 2. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017
- 3. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

UG Physics Syllabus {Page 41 of 48}

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester V, Theory Paper-2 (B010502T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 42 of 48}

Programme/Class: Degree		Year: Thi	rd Semester: Sixth	l	
		Subject: P	hysics		
Cour	Course Code: B010602T Course Title: Analog & Digital Principles & Applications				
		Course Outco	mes (COs)		
 Study the drift and diffusion of charge carriers in a semiconductor. Understand the Two-Port model of a transistor. Study the working, properties and uses of FETs. Comprehend the design and operations of SCRs and UJTs. Understand various number systems and binary codes. Familiarize with binary arithmetic. Study the working and properties of various logic gates. Comprehend the design of combinational and sequential circuits. Credits: 4 Core Compulsory / Elective					
	Max. Marks:		Min. Passing Marks:		
	Total No. of	Lectures-Tutorials-Practica	al (in hours per week): L-T-P: 4-0-0	.	
Unit		Topics		No. of Lectures	
		PART	_		
		Analog Electro		T	
I	Semiconductor Junction Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band, Drift of charge carriers (mobility & conductivity), Diffusion of charge carries and Life time of charge carries in a semiconductor. Work function in metals and semiconductors. Expressions for Barrier potential, Barrier width and Junction capacitance (diffusion & transition) for depletion layer in a PN junction. Expressions for Current (diode equation) and Dynamic resistance for PN junction.				
	Transistor Modeling				
II	Transistor as Two-Port Network. Notation for dc & ac components of voltage & current. Quantitative discussion of Z, Y & h parameters and their equivalent two-generator model circuits. h-parameters for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage & power).			1 8	
		Field Effect Tra			
ш	regions (Ohmic or Linear, (Shorted Gate Drain Curre Drain Current (Shockley Resistance, Mutual Conduc configuration (Self Bias & Comparison (N & P channe MOSFET: Construction an	Saturated or Active or Int, Pinch Off Voltage & Cequation); Characteristic etance or Transconductance Voltage Divider Bias); Als and BJTs & JFETs). d Working of DE-MOSFE Characteristics (Drain &	Pinch off & Break down); Important Terms Fate Source Cut-Off Voltage); Expression for the Source Source Cut-Off Voltage); Expression for the Source Cut-Of	s r n S 8 ;	

UG Physics Syllabus {Page 43 of 48}

	Other Devices				
IV	SCR: Construction; Equivalent Circuits (Two Diodes, Two Transistors & One Diode-One Transistor); Working (Off state & On state); Characteristics; Applications (Static switch, Phase control system & Battery charger). UJT: Construction; Equivalent Circuit; Working (Cutoff, Negative Resistance & Saturation regions); Characteristics (Peak & Valley points); Applications (Trigger circuits, Relaxation	5			
	oscillators & Sawtooth generators).				
	PART B				
	Digital Electronics				
	Number System				
	Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter				
V	conversion.	6			
	Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages				
	& disadvantages. Data representation.				
	Binary Arithmetic	_			
VI	Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's	5			
	& 2's compliment, Multiplication and Division.				
	Logic Gates				
	Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR &				
VII	EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor).	9			
	De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-				
	NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.				
	Combinational & Sequential Circuits				
	Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor.				
VIII	Data Processing Circuits: Multiplexer, Demultiplexer, Decoders & Encoders.	10			
	Sequential Circuits: SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and				
	Asynchronous & Synchronous counters.				
	Suggested Deadings				

Suggested Readings

PART A

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

PART B

- 1. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e
- William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 3. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

UG Physics Syllabus {Page 44 of 48}

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

UG Physics Syllabus {Page 45 of 48}

Programme/Class: Degree		me/Class: Degree Year: Third Semester: Sixt		1	
		Subject: P	hysics		
Cours	e Code: B010603P	Cour	se Title: Analog &	Digital Circuits	
		Course Outco	mes (COs)		
used t		electronic properties. Mea Lab Experiments give an	asurement precision insight in simulation	n and perfection is achiev on techniques and provide	ed through
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	Min. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practic	al (in hours per wee	ek): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
	Lab Experiment List				
	 Energy band gap o Hybrid parameters Characteristics of I FET Conventional FET as VVR and V Study and Verifica 	FET, MOSFET, SCR, UJT Amplifier	TL IC 7408 IC 7432 e as Universal gate as Universal gate us L IC 7404	using TTL IC 7400	60
Online Virtual Lab Experiment List / Link Virtual Labs an initiative of MHRD Govt. of India http://vlabs.iitkgp.ac.in/ssd/#					
	2. Silicon Controlled	tics of Junction Field Effec Rectifier (SCR) characterists stor (UJT) and relaxation of	stics		

UG Physics Syllabus {Page 46 of 48}

Virtual Labs an initiative of MHRD Govt. of India

https://de-iitr.vlabs.ac.in/List%20of%20experiments.html

- 4. Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates
- Construction of half and full adder using XOR and NAND gates and verification of its operation
- 6. To study and verify half and full subtractor
- 7. Realization of logic functions with the help of Universal Gates (NAND, NOR)
- 8. Construction of a NOR gate latch and verification of its operation
- 9. Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates
- 10. Design and Verify the 4-Bit Serial In Parallel Out Shift Registers
- 11. Implementation and verification of decoder or demultiplexer and encoder using logic gates
- 12. Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates
- 13. Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK Flip Flop
- 14. Verify Binary to Gray and Gray to Binary conversion using NAND gates only
- 15. Verify the truth table of 1-Bit and 2-Bit comparator using logic gates

Suggested Readings

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e
- 6. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e
- William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 8. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/ssd/#
- 2. Virtual Labs an initiative of MHRD Govt. of India, https://de-iitr.vlabs.ac.in/List%20of%20experiments.html
- 3. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester VI, Theory Paper-2 (B010602T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)

05 marks for Viva Voce

05 marks for Class Interaction

UG Physics Syllabus {Page 47 of 48}

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

UG Physics Syllabus {Page 48 of 48}